

Invalidities in Causal Assessment and Questionnaire Analysis

Charles A. Graessle, Ph.D. Director of Institutional Research

Olivet College, Olivet, Michigan

Validity in the modern age

Multiple definitions (e.g., Haladyna & Downing, 2004)

- 1. Stability of *concept* over time, items, & raters, over *Ss*, internal...
- 2. Extensibility construct, criterion, predictive..., functional Unanticipated importance & rise of
- 1. Respondent methods surveys, case studies, interviews, qualitative
- 2. Organizational assessment (e.g., Juran, 1998)
 IR: knowledge-activity, users, producers, society

Problems with questionnaires

Cause missed if:

- 1. Believe question captures precise "truth" truth latent, broader; "fuzzy" thinking (e.g., Ziegler, et. al., 2015)
- 2. Focus on finding "positive" resultsx confirmation bias (See Nickerson, 1998)
- 3. Unknown validity / theory
 predictors, "heuristics" (e.g., Chickering,1987)
 ≠ theories (e.g., learning, Bjork, 2011 and
 stereotype vulnerability, Ihme & Moller, 2015)

Pressure to compare institutions

Validity Issues

1. Objectivity vs "We must do what they did"

scientific correlation needs Them counter-examples:

Us Result was

Failure Success

X

2. Missing data fair sample & their failure data inter-institutional confidence intervals individual IDs to relate to outcomes

3. Often assumes that item meaning unchanged

Pressure for high stakes testing

Definitions and examples

- 1. Brief observation that harms, denying graduation, job entry, etc.
 - e.g., min. score to advance to next class
 - e.g., test score allows one to enter a career
- 2. Not all requirements are high-stakes
 - e.g., credit requirement for B.A. degree
 - 120 s.h. is over years no penalty
 - 30 40 different assessments no penalty

High stakes respondent methods

Validity issues

- 1. Negative consequences (e.g., attention)
- 2. Individual prediction = extraordinary claim Implications: Requires
- 1. More types, qualitative & quantitative e.g., Colorado test & teaching (Taylor, 2003)
- 2. Higher minimum values (Jonsson & Svingby, 2007)

Seeing these in an example

Student teacher evaluations

- 1. End-of-education internship (years ago)
- 2. A 35-question survey completed

 Cooperating Teachers at midterm & finals
- 3. Uses (* denotes high-stakes)
 giving feedback to students
 grading/passing students on teaching *
 improving teacher prep program
 "final means" (typical accrediting requirement)

Analyzing the evaluations

Factor Analysis

Finds item groups that "vary together"

- + items correlated with a factor
- can not correct item/sample-selection biases

Assumptions

- 1. "Truth" is behind the survey
 - + "factors" can be "latent" or hidden
 - naming factor is the subjective moment
- 2. Supports qualitative & quantitative validity
- + reduces number of items to most essential A brief intro to factoring...

Our results

Final means were >=85%

- 1. Positive, "final means"-focused conclusion
- 2. Analyses to help dept/college: which parts of survey are best? trusted?

Factor Analyses performed on both sets of data

- 1. Example does not label items or factors
- 2. Interpretation based on number of factors found items which compose each factor

Midterm Evaluation

Factor matrix of cooperating teachers evaluations

(part of a rotated matrix shown –data no longer used)

	ractors At Whaterin	
	1 2 3	Three factors identified
Item 1	.281 .470 .543	(the overall score on this
Item 2	.216 .831 .154	survey has 3 components)
Item 3	.298 .554 .469	
Item 4	.547 .205 .552	Partial correlations
Item 5	.328 .261 .746	(item is heavily linked to a
Item 6	.525 .341 .410	factor if value >=.6 and low
Item 7	.545 .085 .505	values on other factors)
Item 8	.601 .228 .160 —	Valid midterm survey needs
Item 9	.764 .145 .335	only circled items (10-15
Item 10	.396 .783 .271	needed)
Item 11	.431 .756 .151	

Final evaluation

How does this compare to "Final scores"?

(same students, class, instrument, and cooperating teachers)

	Factors at Midterm				At Finals		
	1	2	3		1	2	3
Item 1	.281	.470	.543		340	.635	.144
Item 2	.216	.831	.154	_	625	.284	.354
Item 3	.298	.554	.469	_	620	.401	.307
Item 4	.547	.205	.552	-	709	.362	.208
Item 5	.328	.261	.746	-	208	.843	.174
Item 6	.525	.341	.410		320	.231	.818
Item 7	.545	.085	.505		167	.120	.885
Item 8	.601	.228	.160		383	.344	.440
Item 9	.764	.145	.335		537	.373	.409
Item 10	.396	.783	.271		571	.608	.266
Item 11	.431	.756	.151		562	.623	.266

In this example only 2 of 11 items remain associated. All other itemloadings changed

Factor means can not be compared. Instead, we must explain why the factors differ.

We must describe a qualitative change

Notice items that are necessary/ which are not

(same students, class, instrument, and cooperating teachers)

	Factors at Midterm		At Finals	
	1 2	3	1 2 3	Science tells us
Item 1	.281 .470	.543	.340 (.635) .144	that items
Item 2	.216 .831	.154	.625 .284 .354	1, 3, 4, 6, and 7
Item 3	.298 .554	.469	.620 .401 .307	are newly-
Item 4	.547 .205	.552	.709 .362 .208	emphasized at
Item 5	.328 .261	.746	.208 .843 .174	finals
Item 6	.525 .341	.410	.320 .231 .818	
Item 7	.545 .085	.505	.167 .120 .885	:tomo 0 9 0
Item 8	.601 .228	.160	.383 .344 .440	items 8 & 9
Item 9	.764 .145	.335	.537 .373 .409	— are now less
Item 10	.396 .78 3	.271	.571 .608 .266	important
Item 11	.431 .75 6	.151	.562 .623 .266	

Is factoring related to score increase?

More items became important than less important

(same students, class, instrument, and cooperating teachers)

	Factors at Midterm		At Finals	
	1 2	3	1 2 3	If so, then new
Item 1	.281 .470	.543	.340 .635 .144	item scores
Item 2	.216 .831	.154	.625 .284 .354	were lower on
Item 3	.298 .554	.469	.620 .401 .307	midterm
Item 4	.547 .205	.552	.709 .362 .208	
Item 5	.328 .261	.746	.208 .843 .174	
Item 6	.525 .341	.410	.320 .231 .818	
Item 7	.545 .085	.505	.167 .120 .885	And Hom 0 9 0
Item 8	.601 .228	.160	.383 .344 .440	And item 8 & 9
Item 9	.764 .145	.335	.537 .373 .409	scores were
Item 10	.396 .783	.271	.571 .608 .266	higher at midt.
Item 11	.431 .756	.151	.562 .623 .266	

An objective test of that prediction

Relation of qualitative change to evaluations

No. Unattached improved at about same rate. <u>See ANOVAs</u> All items, factors improved & were not different at Final.

Conclusions from this data

Student teacher success based on means

1. All improved, but all same by final performed a lot in last half? work remembered better by final?

Possible confounds/ validity concerns

- 1. Untheorized factor structure effects
- 2. Less discriminating at final less time => less serious
- 3. More likely to hurt student (high stakes eval)
- 4. Evaluator may be hurt

Putting IR on the screen

Advising about knowledge-activity

- 1. Be theoretical about respondent methods imprecision of soc science knowledge qualitative & modern analyses
- 2. Remove invalidity pressures design equivalency (e.g., factor structures) trust & respect ≠ high stakes decision-making
- 3. Promote sophistication in interpretation assessor, Board, administrator skills learn to help each other

Invalidities in Causal Assessment and Questionnaire Analysis

Questions/Comments

cgraessle@olivetcollege.edu

For example...

Group by how respondents answer items

Students in Michigan indicate amount of agreement with items where 4=Strongly agree and 1=Strongly disagree

	Respondent			
Item	#1	#2	#3	#4
I originally lived near Michigan	4	4	1	1
I originally lived near Texas	1	1	4	4
The sky is blue here	4	4	3	2
I live with non-Earth beings	1	1.5	1	1.5

These are negatively related, but are still responded to in the "same" way But this item is not related to any others

Original survey responses...

		Respo	ndent		
Item	#1	#2	#3	#4	
I originally lived near Michigan	4	4	1	1	
I originally lived near Texas	1	1	4	4	
The sky is blue here	4	4	3	2	
I live with non-Earth beings	[1	1.5	1 /	1.5	

yields 2 different factors(bold-faced).../

		Fact	tor
	Item	#1	#2
	I originally lived near Michigan	.995	.044
	I originally lived near Texas	955	044
	The sky is blue here	.940	279
<u>Return</u>	I live with non-Earth beings	038	.997

<u>.um</u>

Objective tests of factor improvement

Items unattached at midterm improved like others

1. 2 x 2 repeated measures ANOVA on means 2 different evaluation times (Midterm vs Finals) and whether items were or were not part a factor at midterm

Effect (Source)	SS	df	MS	F	р
Time: Midterm or Finals	12.986	1	12.986	113.24	.000*
Belonged to a Factor	.044	1	.044	2.013	.157
Time X Belonging to Factor	.022	1	.022	.120	.729
Error	3.481	267			

Objective tests of factor improvement

Midterm factors all improved, but at different rates

2. 4 x 2 repeated measures ANOVA on means

2 different evaluation times (Midterm vs Finals) and 3 midterm factor item was attached (or was unattached) Greenhouse-Geisser adjusted *df* used

Effect (Source)	SS	df	MS	F	p
Time: Midterm or Finals	26.629	1	26.629	116.34	.000*
Error (Time)	59.74	261	.229		
Factor at Midterm	11.394	2.637	4.262	68.66	.000*
Error (Factor)	43.314	697.72	.062		
Time X Factor	1.005	2.858	.352	14.64	.000*
Error	17.921	746.04	.024		

Citations

Bjork, E.L., and Bjork, R. A. (2011). On the symbiosis of learning, remembering, and forgetting. In A. S. Benjamin (Ed.), *Successful remembering and successful forgetting: A Festschrift in honor of Robert A. Bjork,* (pp. 1-22). London, UK: Psychology Press.

Chickering, A. W. and Gamosn, Z. F. Seven principles for good practice in undergraduate education. *AAHE Bulletin.* 3-7.

Haladyna, T. M., and Downing, S. M. (2004). Construct-irrelevant variance in high-stakes testing. *Educational Measurement, Issues and Practice, 23*(1), 17-27.

Ihme, T. I., and Moller, J. (2015). "He who can, does; he who cannot, teaches?": Stereotype threat and preservice teachers. *Journal of Educational Psychology, 107*(1), 300-308.

Citations (continued)

Jonsson, Anders, and Svingby, Gunilla. (2007). The use of scoring rubrics: Reliability, validity, and educational consequences. *Educational Research Review, 2*(2), 130-144.

Juran, J. M. (1998). How to think about quality. In Juran, J.M. & Godfrey, A. B. (Eds), *Juran's Quality Handbook, 5th Edition.* New York: McGraw-Hill. Nickerson, R. (1998). Confirmation bias: A ubiquitous phenomenon in many guises. *Review of General Psychology, 2*(2), 175-220.

October 2010 23

Citations (continued)

Taylor, G, Shepard, L, Kinner, F., and Rosenthal, J. (2003). A survey of teachers' perspectives on high-stakes testing in Colorado: What gets taught, what gets lost. Technical Report #588, Los Angeles, Center for the Study of Education. Downloaded form internet: http://www.cse.ucla.edu/products/Reports/TR588.pdf

Zielger, Matthias, Kemper, Christoph J., and Lenzner, Timo. (2015). The issue of fuzzy concepts in test construction and possible remedies. *European Journal of Psychological Assessment*, *31*(1), 1-4.

October 2010 24